skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Ziyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract Sodium superionic conductor (NASICON)‐type materials are getting more and more attention due to their high capacity and good cycling ability compared with other cathode materials in aqueous zinc ion batteries (AZIB). The present paper was to study the synthesis and electrochemical properties of two NASICON compounds of Na3V2(PO4)3and Na3V2(PO4)2F3and to understand the impacts of fluorine. Both Na3V2(PO4)3and Na3V2(PO4)2F3are synthesized by hydrothermal growth followed with annealing at 800°C in inert gas. With 3 mol/L Zn(CF3SO3)2in water as electrolyte, Na3V2(PO4)3offered a high storage capacity, while Na3V2(PO4)2F3demonstrated a high discharge voltage though low storage capacity. It was also found that the storage capacity of Na3V2(PO4)2F3increases with increased cycles; however, the compound undergoes a gradual phase transition. It is discussed possible approaches to attain both high discharge voltage and large capacity with good cycling stability. 
    more » « less